近日,《环境遥感》在线发表了中外科学家合作提出的一种协同遥感数据和统计数据的农作物空间分布制图新方法。
该项研究由中国农业科学院农业资源与农业区划研究所智慧农业创新团队与华中师范大学、美国波士顿大学、美国肯特州立大学和国际粮食政策研究所等联合完成。
论文通讯作者研究员吴文斌介绍,农作物空间分布图是科学掌握区域农业生产状况、优化农业资源配置利用、调整农作物种植结构的重要基础。
中低空间分辨率遥感数据(如中分辨率成像光谱仪MODIS)是区域农作物空间分布制图或种植结构监测中广泛使用的数据源,其具有观测幅宽大、谱段多和时频高等特点,可以较好刻画复杂种植结构下农作物的生长发育物候特征。然而,其较粗的空间分辨率常带来混合像元的问题,分类中训练样本、大气干扰、影像预处理、机器学习算法等也有很多不确定性,这些都显著限制了农作物空间分布制图精度。
“农作物统计数据也常在农作物空间分布制图中得到应用,虽难以刻画农作物详细的空间分布信息,但在作物类型和数量特征描述,以及时间连续性表达等方面具有独特优势。”吴文斌说,已有研究多是将统计数据作为外部参考数据,应用于遥感制图结果验证和精度评价。统计数据没有参与到遥感制图的关键环节中,并没有实现遥感数据和统计数据的真正协同。
针对这一问题,研究团队从充分挖掘中低分辨率遥感影像和农业统计数据的优势出发,联合提出了协同这两类数据的农作物亚像素制图新方法。
首先,该方法基于随机森林回归模型提出了“向后特征剔除法”,自动筛选出作物识别的最佳光谱-时相特征组合,提高作物丰度遥感估算精度。
其次,引入作物面积统计数据,计算遥感分类结果与统计数据的面积差,提出了面积差空间迭代分配新方法(IAGSA),进行面积差空间像元合理分配,实现遥感分类的作物丰度结果精化。
该团队以我国最大商品粮基地——黑龙江省为研究区域,以主要农作物(水稻、玉米和大豆)为研究对象,对方法可靠性和稳定性进行了验证。
结果表明:基于时序MODIS生成的亚像素作物分布图与中高分辨率参考图的空间一致性达0.75;利用IAGSA优化得到的农作物亚像素制图结果,不仅在数量上与统计数据的一致性显著提升,而且也保留了遥感制图结果的空间分布特征。IAGSA策略具有明显的尺度效应,即统计数据的空间尺度越小,优化的遥感结果的空间异质性越大。
该方法充分挖掘了遥感数据和统计数据协同利用的优势,一方面提升了中低分辨率遥感数据作物空间分布制图的精度,可为我国大区域“作物一张图”研制提供新支撑;另一方面丰富和发展了遥感数据源和非遥感数据源融合的技术方法,可为多源数据的协同融合提供新参考。
该研究得到国家自然科学基金创新群体项目、国家重点研发计划项目、国际农业科学计划项目共同资助。
相关论文信息:https://doi.org/10.1016/j.rse.2021.112365
【免责声明】本文转载自网络,与科技网无关。科技网站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。